transition-temperature approach - definição. O que é transition-temperature approach. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é transition-temperature approach - definição

TEMPERATURE ABOVE WHICH CERTAIN MATERIALS LOSE THEIR PERMANENT MAGNETIC PROPERTIES
Néel temperature; Curie Point; Neel temperature; Néel Temperature; Neel Temperature; Curie temp; Curie Temperature; Curie point; Neel Point; Néel point; Neel point; Ferrorelectric transition
  • '''Figure 3.''' The Weiss domains in a ferromagnetic material; the magnetic moments are aligned in domains.

Epidemiological transition         
  • Leading causes of DALYs and percentage change between 1990 and 2013, Chile
  • Demographic change in Germany, Sweden, Chile, Mauritius, China from 1820 to 2010.<br />Pink line: crude [[death rate]] (CDR), green line: (crude) [[birth rate]] (CBR), yellow line: population.
  • Leading causes of DALYs and percentage change between 1990 and 2013, France
  • 25 most common GBD level 3 causes of global DALYs for both sexes combined, 1990, 2005, and 2013, with age-standardised median percentage change. Ranks are based on the number of DALYs. 95% UIs for mean rank are from 1000 draws of DALYs. Communicable, maternal, neonatal, and nutritional disorders causes are shown in red, non-communicable causes in blue, and injuries in green. DALY=disability-adjusted life-years. GBD=Global Burden of Disease. UI=uncertainty interval. COPD=chronic obstructive pulmonary disease.
  • Population pyramids of developed and developing nations, showing how increased lifespan and changes in fertility alter the population. Each bar represents an age category and its percent of the total population, with males to the left and females to the right.
  • Leading causes of DALYs and percentage change between 1990 and 2013, Zimbabwe
TERM IN DEMOGRAPHY AND MEDICAL GEOGRAPHY OF DEVELOPING COUNTRIES IN PARTICULAR, RELATING TO AN OLDER POPULATION
Epidemiologic Transition; Epidemiological Transition; Epidemiologic transition
In demography and medical geography, epidemiological transition is a theory which "describes changing population patterns in terms of fertility, life expectancy, mortality, and leading causes of death." For example, a phase of development marked by a sudden increase in population growth rates brought by improved food security and innovations in public health and medicine, can be followed by a re-leveling of population growth due to subsequent declines in fertility rates.
Absolute Temperature         
  • '''Figure 2.5''' This simulation illustrates an argon atom as it would appear through a 400-power optical microscope featuring a reticle graduated with 50-micron (0.05&nbsp;mm) tick marks. This atom is moving with a velocity of 14.43 microns per second, which gives the atom a kinetic temperature of one-trillionth of a kelvin. The atom requires 13.9 seconds to travel 200 microns (0.2&nbsp;mm). Though the atom is being invisibly jostled due to zero-point energy, its translational motion seen here comprises all its kinetic energy.
  • '''Figure 7''' Water's temperature does not change during phase transitions as heat flows into or out of it. The total heat capacity of a mole of water in its liquid phase (the green line) is 7.5507&nbsp;kJ.
  • [[Joseph Louis Gay-Lussac]]
  • [[Guillaume Amontons]]
  • [[Johann Heinrich Lambert]]
  • [[Jacques Alexandre César Charles]]
  • [[Macquorn Rankine]]
ABSOLUTE MEASURE OF TEMPERATURE
Absolute temperature; Absolute Temperature; Thermodynamic temperature scale; Kelvin temperature; Temperature (thermodynamic); Atoms can have zero kinetic velocity and simultaneously be vibrating due to zero-point energy
Temperature reckoned from absolute zero (see "Zero, Absolute"). It is obtained by adding for the centigrade scale 273, and for the Fahrenheit scale 459, to the degree readings of the regular scale.
absolute temperature         
  • '''Figure 2.5''' This simulation illustrates an argon atom as it would appear through a 400-power optical microscope featuring a reticle graduated with 50-micron (0.05&nbsp;mm) tick marks. This atom is moving with a velocity of 14.43 microns per second, which gives the atom a kinetic temperature of one-trillionth of a kelvin. The atom requires 13.9 seconds to travel 200 microns (0.2&nbsp;mm). Though the atom is being invisibly jostled due to zero-point energy, its translational motion seen here comprises all its kinetic energy.
  • '''Figure 7''' Water's temperature does not change during phase transitions as heat flows into or out of it. The total heat capacity of a mole of water in its liquid phase (the green line) is 7.5507&nbsp;kJ.
  • [[Joseph Louis Gay-Lussac]]
  • [[Guillaume Amontons]]
  • [[Johann Heinrich Lambert]]
  • [[Jacques Alexandre César Charles]]
  • [[Macquorn Rankine]]
ABSOLUTE MEASURE OF TEMPERATURE
Absolute temperature; Absolute Temperature; Thermodynamic temperature scale; Kelvin temperature; Temperature (thermodynamic); Atoms can have zero kinetic velocity and simultaneously be vibrating due to zero-point energy
¦ noun a temperature measured from absolute zero in kelvins.

Wikipédia

Curie temperature

In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism was lost at a critical temperature.

The force of magnetism is determined by the magnetic moment, a dipole moment within an atom which originates from the angular momentum and spin of electrons. Materials have different structures of intrinsic magnetic moments that depend on temperature; the Curie temperature is the critical point at which a material's intrinsic magnetic moments change direction.

Permanent magnetism is caused by the alignment of magnetic moments and induced magnetism is created when disordered magnetic moments are forced to align in an applied magnetic field. For example, the ordered magnetic moments (ferromagnetic, Figure 1) change and become disordered (paramagnetic, Figure 2) at the Curie temperature. Higher temperatures make magnets weaker, as spontaneous magnetism only occurs below the Curie temperature. Magnetic susceptibility above the Curie temperature can be calculated from the Curie–Weiss law, which is derived from Curie's law.

In analogy to ferromagnetic and paramagnetic materials, the Curie temperature can also be used to describe the phase transition between ferroelectricity and paraelectricity. In this context, the order parameter is the electric polarization that goes from a finite value to zero when the temperature is increased above the Curie temperature.